Jupyter Notebook
This tutorial aims to help you and provides guidelines on how to use Wizata Python Toolkit on Jupyter Notebook.
Installation
Ensure your are running a notebook on Python 3.9
from platform import python_version
print(python_version())
Make sure you have installed wizata_dsapi on your environment. If not, please use import wizata_dsapi
Set environment variables to connect to Wizata (see configuration)
%env WIZATA_TENANT_ID=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
%env WIZATA_CLIENT_ID=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
%env WIZATA_SCOPE=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/api
%env WIZATA_DOMAIN=xxx-wizard.onwizata.com
%env [email protected]
%env WIZATA_PASSWORD=xxxxxxxxxxx
Donโt use double quotation (โ) in variable value!
Fetch a Dataframe
The โclientโ can be easily accessed and generated thanks to environment variables and api()
attribute: wizata_dsapi.api()
You can fetch data from Wizata using a simple query like this one :
from datetime import datetime
import pandas
df = wizata_dsapi.api().query(
datapoints=["<hardwareid_XX>","<hardwareid_XY>"],
start=datetime.strptime("2023-01-01","%Y-%m-%d"),
end=datetime.strptime("2023-01-02","%Y-%m-%d"),
interval=60000
)
Develop functions
Create and test your function(s) locally
def notebook_sample(df):
return df
notebook_sample(df)
As a reminder, you can transform data, plot them or train models.
Once your solutions are ready, upload, test and validate them.
wizata_dsapi.api().upsert(notebook_sample)
result = wizata_dsapi.api().test(script='notebook_sample',dataframe=df)
print(wizata_dsapi.api().validate(script='notebook_sample',dataframe=df).status)
Show plots
You can visualize any wizata plot within your notebook. Use the helper method wizata_dsapi.api().plot()
, you can pass an id, a figure or a Wizata DS API Plot object.
wizata_dsapi.api().plot('xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx')
wizata_dsapi.api().plot(figure=myfigure)
wizata_dsapi.api().plot(plot=wizata_dsapi_plot)
Updated 3 months ago